
Case study:
Parallel LU factorization on 

BG/L
or

how I stopped worrying and learned to love BG/L

Sid Chatterjee, Manish Gupta, José E. Moreira



Making good use of BG/L with MPI
IBM's BlueGene/L is a feature-rich architecture:

Torus interconnect for high-bandwidth communication
Multicast operations along any axis of the torus
Tree interconnect for low-latency/high-bandwidth reduces/broadcasts
16-byte floating-point unit capable of 4 floating-point operations per cycle
Two processors/node

Exploiting those features requires several levels of support
Compilers must be able to extract and expose instruction-level parallelism
Libraries must be coded so that they use the features
Application programs must be coded so that features can be used

This talk is about organizing your MPI program so that it can take 
advantage of the "cool" features of BlueGene/L
It is organized as a case study of a well-know computation: 
Blocked LU factorization



Blocked LU factorization - an algorithm

current block
being factored

pivot and 
scale columns

update rows
with DRTSM

update matrix
with DGEMM

already factored



Start with next diagonal block
Pivot and update columns

find maximum absolute value
exchange with diagonal
update next columns

At the end, red block is in LU
factored form, blue blocks are
updated

Blocked LU factorization - step 1



Update row of green blocks
use lower factor of red block
with each green block
DTRSM operation

At the end, green blocks are
updated

Blocked LU factorization - step 2



Update each orange block
use green block of column 
and blue block of row
DGEMM operation

Each blue block is used in 
every orange block of row
Each green block is used in
every orange block of column
At the end, orange blocks are
updated
LU factorization continues 
with next diagonal block

Blocked LU factorization - step 3



P0,0

P0,1

P0,7

Parallel LU factorization
We partition the matrix as an 8x8 
array of blocks
We execute the factorization on an 
8x8 logical grid of processes
The data is decomposed using a 
block distribution
(In practice, block-cyclic 
distribution gives better utilization)
To run on BG/L:

request the appropriate number
of compute nodes
create a logical two-dimensional
grid of processes
perform operations on that logical 
grid

P0,2

P0,3

P0,4

P0,5

P0,6

P1,0

P1,1

P1,7

P1,2

P1,3

P1,4

P1,5

P1,6

P2,0

P2,1

P2,7

P2,2

P2,3

P2,4

P2,5

P2,6

P3,0

P3,1

P3,7

P3,2

P3,3

P3,4

P3,5

P3,6

P4,0

P4,1

P4,7

P4,2

P4,3

P4,4

P4,5

P4,6

P5,0

P5,1

P5,7

P5,2

P5,3

P5,4

P5,5

P5,6

P6,0

P6,1

P6,7

P6,2

P6,3

P6,4

P6,5

P6,6

P7,0

P7,1

P7,7

P7,2

P7,3

P7,4

P7,5

P7,6



Creating a physical node partition
Node partitions are created when jobs
are scheduled for execution
User specifies desired shape when
submitting job:

submit lufact 2x4x8
request a job partition of 64 compute
nodes, with shape 2 (on x-axis) by
4 (on y-axis) by 8 (on z-axis)

A contiguous, rectangular subsection
of the compute nodes is carved out
for this job
Nodes are indexed by their (x,y,z) 
coordinates inside the job partition

z=0
z=1

z=2
z=3

z=4
z=5

z=6
z=7

x=0 x=1

y=3

y=2

y=1

y=0



Mapping processes to physical nodes
In MPI, logical process grids are
created with MPI_CART_CREATE
The mapping is performed by the
system, matching physical topology
In this case, we have mapped each
xy-plane to one column
Within a column, consecutive 
values of y are neighbors
Logical row operations correspond
to operations on a string of physical
nodes along the z-axis
Logical column operations
correspond to operations on an
xy-plane
row and column communicators are
created with MPI_CART_SUB

0,0,0 0,0,1 0,0,7

0,1,0

1,3,0 0,0,0

0,2,0

0,3,0

1,0,0

1,1,0

1,2,0

0,0,1

0,1,1

1,3,1

0,2,1

0,3,1

1,0,1

1,1,1

1,2,1

0,0,2

0,1,2

1,3,2

0,2,2

0,3,2

1,0,2

1,1,2

1,2,2

0,0,3

0,1,3

1,3,3

0,2,3

0,3,3

1,0,3

1,1,3

1,2,3

0,0,4

0,1,4

1,3,4

0,2,4

0,3,4

1,0,4

1,1,4

1,2,4

0,0,5

0,1,5

1,3,5

0,2,5

0,3,5

1,0,5

1,1,5

1,2,5

0,0,6

0,1,6

1,3,6

0,2,6

0,3,6

1,0,6

1,1,6

1,2,6

0,0,7

0,1,7

1,3,7

0,2,7

0,3,7

1,0,7

1,1,7

1,2,7



Creating communicators

First, create a two-dimensional 8x8 cartesian communicator:
GRID2D_COMM = MPI_CART_CREATE(MPI_COMM_WORLD, 2, 8x8)

Then, create a communicator along the row of each process:
ROW_COMM = MPI_CART_SUB(GRID2D_COMM, [true, false)

Finally, create a communicator along the column of each process:
COL_COMM = MPI_CART_SUB(GRID2D_COMM, [false, true])



Pivot and update columns
find maximum absolute value
exchange with diagonal
update next columns

At the end, red block is in LU
factored form, blue blocks are
updated
Each process finds its maximum
absolute value in column
MPI_REDUCE is used to find
column maximum

operation on a logical column
of processes = xy-plane in
physical partition

Blocked LU factorization - step 1



Expressing operation in MPI:
pivot = MPI_REDUCE(local_max, MAX, COL_COMM)

Performing the operation on a physical plane:

Computing global maximum

x=0 x=1

y=3

y=2

y=1

y=0 0

0

One option is to map the reduction to the tree:
use different classes for subsets of processes
in general, cannot be done for all desired subsets

Another option is to use row multicast to flood 
the plane with local maxima

takes advantages of high bandwidth in torus
Or, can just use point-to-point communications to 
perform reduction as data is moved



Update row of green blocks
use lower factor of red block with 
each green block
DTRSM operation

At the end, green blocks are updated
MPI_BCAST is used to distribute 
factor:

operation on logical row of processes 
= z-axis of physical partition

Blocked LU factorization - step 2



Broadcasting along logical row
Expressing operation in MPI:

MPI_BCAST(block, ROW_COMM)

Performing operation on a physical string of nodes:

A simple multicast to all nodes in z-axis will do the trick

z=0 z=1 z=2 z=3 z=4 z=5 z=6 z=7



Update each orange block
use green block of column and blue 
block of row
DGEMM operation

Each blue block is used in every 
orange block of row
Each green block is used in every 
orange block of column
At the end, orange blocks are 
updated
LU factorization continues with next 
diagonal block
MPI_BCAST is used to distribute 
blue blocks along row and green 
blocks along columns

Blocked LU factorization - step 3



Broadcasting along logical rows/columns
Expressing operation in MPI:

MPI_BCAST(block, ROW_COMM)
MPI_BCAST(block, COL_COMM)

Performing operation on a physical string of nodes alon z-axis:

A simple multicast to all nodes in z-axis will do the trick
for a blue block

Performing operation on a physical xy-plane:
A double multicast, first along y-axis and then along x-axis
will flood the plane with a green block 

z=0 z=1 z=2 z=3 z=4 z=5 z=6 z=7

x=0 x=1

y=3

y=2

y=1

y=0



Conclusions
Efficient mapping of operations on logical grid to real compute 
nodes require some forethought: interaction between job 
submission and run-time
Broadcasts and reduces can be performed very efficiently in 
BG/L if they map to regular subsections of compute node grid

strings along an axis
planes of the three-dimensional interconnect

We did not mention in this talk, but "where" the data is in 
memory is very important to BG/L

performance critical data should be 16-byte aligned
requirement for both send and received

Goal is to simplify life of programmer, let the system do it!


